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Irreversible Evolution in Quantum Logics 

A n t o n i o  Z e e e a  1 

Received October 26, 1991 

The notion of dynamical semigroup is introduced in the quantum logic scheme 
on the set of the states. Under suitable nonempty mathematical assumptions it 
is shown that a Heisenberg picture exists equivalent to the Schrrdinger one and 
having many aspects similar to those of the Hilbert case. 

1. I N T R O D U C T I O N  

We reconsider here the problem of  the characterization of  the time 
evolution of  a physical system in the context of  the logic approach to the 
axiomatics of  quantum mechanics. Of  course the problem can be solved by 
specializing the logic scheme to be represented by the Hilbert model and 
then by defining the usual reversible or irreversible dynamics. 

The object of  this paper  is to characterize the irreversible time evolution 
which the physical system undergoes directly at the level o f  the logic scheme, 
in analogy to what was done for the case of  the reversible dynamics by 
Gorini  and Zecca (1975). The definition given there requires essentially that 
the time evolution, not necessarily linear, preserves the quantum superposi.. 
tion of  the states and the orthogonality relation in the logic. Since in general 
an irreversible t ime evolution maps  decision effects into effects which are 
not decision effects, the definition and the results in Gorini  and Zecca (1972) 
can be no longer applied. 

For this reason we consider here the conventional quantum logic 
scheme along the line of  results of  Gudder ,  Kronfli, and Fisher and Riitti- 
man. The assumptions are such that the probabil i ty measures in the logic 
are a subset of  the Banach space of  the states, while the observables are a 
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normed linear space because existence and uniqueness of the observables 
is postulated. 

The characterization of the irreversible dynamics of the physical system 
is proposed in terms of a one-parameter semigroup of linear (not necessarily 
1-1) transformations of the Banach space of the states which leaves the set 
of the probability measures invariant. This is done in analogy to the 
definition of Kossakowski (1972) for the axiomatic description of non- 
Hamiltonian time evolutions of physical systems in conventional quantum 
mechanics. 

By using an explicit mathematical request on the theory it is shown 
that a corresponding irreversible Heisenberg picture exists and has proper- 
ties analogous to those of the Hilbert case. By another direct mathematical 
request it is then shown that the SchrSdinger picture is implemented by the 
Heisenberg one, showing in this way the physical equivalence of the two 
dynamical descriptions. 

Finally, by adapting results contained in Gorini and Zecca (1975), it 
is shown that the case of the reversible dynamics characterized by a one- 
parameter group of permutations (not necessarily linear) of the states which 
preserves the quantum superposition of the states and the orthogonality 
relation on the logic admits by construction equivalent SchriSdinger and 
Heisenberg solution satisfying our definition. 

2. DEFINITION AND ASSUMPTIONS 

We associate to the physical system a pair (L, S), where L is a logic, 
namely an orthocomplemented, weakly modular, tr-complete lattice; S is 
the set of all probability measures on L which is also separating, namely 
the set of all maps so[0,  1] L such that (i) s (Q)=0;  (ii) s(~)=l;  (iii) 
s ( V  i ai) = ~i s( al) ( 0 ,  ~ ~ L, a~ .1_ ak ) satisfying s( a ) = s( b ), V s ~ S ~ a = b; 
O is the set of the observables of L, namely of the cr-homomorphism 
x : B(R) ~ L [B(•) denotes the Borel subsets of R]. We denote by tr(x) the 
spectrum of an observable x, namely the smallest closed subset F c R such 
that x ( F )  = 1. An observable x is bounded if or(x) is compact. We denote 
again by O the set of the bounded observables of L and by Q the questions 
of O, that is, the observables xa defined by Xa({1})= a and x({0})= a -L, 
a ~ L. The identity observable I is defined to be the observable such that 
o-(I) = {1}. The point spectrum of x is o'p(x) = {h c RIx({h}) ~ Q}. We call 
effects the elements of the set E ={x e Oltr(x ) c [0, 1]}. The expectation 
value of an observable when the system is in the state s is denoted by 
s (x )  =~a ;ts(x(dA)).  It must be remarked that, in contrast to the Hilbert 
model, in general an observable is not determined by its expectations 
(Gudder, 1978). Sufficient conditions for the uniqueness are, for instance, 
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that (a) S is strongly order determining and (b) observables having the 
same expectations have countable spectra or at most one limit point spec- 
trum (Gadder,  1966a, b, 1970, 1978). 

The sum z = x + y  of observables can be defined through the sum of  
their expectations: s(z)= s(x)+ s(y), Vs ~ 5;. However, existence is not in 
general guaranteed (Gadder,  1970). In the following, uniqueness and 
existence properties for observables are assumed. Under these assumptions 
O is a normed linear space with the norm Ix I = sup{[hi I A ~ cr(x)} (Gadder,  
1966a). 

For the next considerations it is useful to consider S as a subset of  a 
Banach space. This can be achieved in different ways by introducing suitable 
metrics in the set of the states as has been done, for instance, in Kronfli 
(1970a), Gadder  (1973), and Fisher and Riittiman (1978, and references 
therein). 

Here the mathematical framework developed by Fisher and Riittiman 
(1978) will be adopted. Accordingly, K denotes the cone of  the elements 
m E EL such that (i) m(Q) = 0, (ii) m(a v b) = re(a) + re(b) (a _1_ b), and (iii) 
re(a) >- 0, Va ~ L; ~ denotes the set of  the elements m ~ K such that m(~) = 1 
and V = lin ~ = K - K. A norm (the base norm) can be introduced in V in 
terms of  the Minkowski functional of  the convex hull D = con(l~ w - ~ )  

]lml[ = Inf{d > 0[ m ~ dD} 

For m ~ K  one has in particular Ilmll = r e ( l ) ,  so that Ilsl[ = 1, VsES. The 
normed space (V, []. [1) is a Banach space with respect to the base norm 
provided ~ ~ 0. 

The closure X of  the linear span of  S in V will be called the state 
space and its Banach dual denoted by X*. Defining T(a)(m) = s(a) ,  m ~ V, 
a ~ L, then LT = {T(a)la ~ L} c V*c  X* (Fisher and Riittiman, 1978). The 
map T has the following properties: (i) T is an injection L ~  X*, since S 
is separating, (ii) T ( O ) = 0 ,  (iii) [ [T(a) l i -  < 1 and T(~)= 1 in X*, since 
[I T(a)l[ -< 1 in V*; (iv) T(a) is weakly countable additive on L: 

T ( V  a , ] ( s ) = Z  T(a,)(s) V s ~ X  and ai_l. ak, i C k  
n 

As a consequence, the results of  Kronfli (1970b) concerning the integration 
theory of observables holds. Accordingly, the map u ~ u* given by 

= fR ya(dy) (u e O) 
u :~ 

where a is the bounded, weakly countable, additive X*-valued measure on 
B(R) defined by ~(A)(p)=p(u(A))  [ p e X ,  A e  B(R)]; it maps O into X* 
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and is such that u*(s )=~  ys(u(dy)) coincides with the expectation value 
for the observable u when the system is in the state s ~ S. We denote by 

B = { I R Y a ( d y ) l u ~ O  } 

the bounded linear functional on X "represented" by the bounded 
observables. 

3. THE TIME EVOLUTION 

We adapt here the definition of dynamical semigroup introduced by 
Kossakowski (1972). 

Definition 1. A one-parameter family t-> at, t ~>0, of linear endo- 
morphisms of V is said to be a quantum dynamical semigroup of the 
quantum physical system if: (i) a , S c  S; (ii) Ila,m}l <- Ilmll, Vm ~ X; and 
(iii) atet~ = at+~, t, ~- -> 0. 

We remark that condition (ii) is a consequence of condition (i). Indeed, 
if d > 0 is such that m ~ d con(fl u - i 2 ) ,  then by the linearity of at and 
condition (i), arm ~ d con(i~ u -l~). Hence, from the very definition of the 
norm, Ilk,roll <-Ilmll. Conditions (ii) and (iii) together with (iv) a, is a 
strongly continuous function of t >- 0, and (v) s-limt_~o ct,m = m, Vm c V, are 
sufficient conditions to ensure the validity of the Hille-Yosida theorem (see, 
for instance, Yosida, 1971), which implies the existence of the infinitesimal 
generator of the dynamical semigroup. 

In the Hilbert model, where S = S(H),  S(H) being the set of all the 
probability measures on the complete orthocomplemented, weakly modular 
lattice L(H) of a separable complex Hilbert space H, by the result of 
Gleason (1957), S(H) can be identified with the convex set of positive trace 
1 operators on H and X with L~(H), the real Banach space of self-adjoint 
trace-class linear operators on H. In this model, if conditions (i)-(v) are 
assumed, the definition of dynamical semigroup coincides with the one 
given by Kossakowski (1972). The generator of a dynamical semigroup has 
been determined, with the preliminary assumption of complete positivity, 
in the case of an N-level system [see Gorini et al. (1976) and, for an 
elementary proof, Parravicini and Zecca (1977)] and in the bounded case 
(Lindblad, 1976). For the unbounded case some results can be found in 
Davies (1977, 1979). The dynamical semigroup has been widely used in the 
phenomenological treatment of open systems (Lanz et aL, 1971; Haake, 
1973; Frigerio et al., 1978). 

We now introduce the Heisenberg picture in the logic scheme. Accord- 
ing to the results quoted in the previous section, for every observable u and 
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dynamical semigroup t ~ at, one has 

Ilu*(~,s)ll<-kllsll v s ~ x ,  t>-O 

for some positive constant k, since u* ~ X* and or, is a contractive map. By 
setting 

DT(u)*(s) = u*(a,s) Vs ~ X 

we have from the definition D'](u)*~ X*,  Vt >-O. The expression u*(a,s) 
represents for s E S the expectation of the observable u when the system 
has evolved into the state ats. In order to generalize the Heisenberg picture 
we assume that there exists a (bounded) observable such that its expectation 
coincides with the mentioned one when the system is in the state s. 

Axiom I. DT(u)*~B, Vt_>O. 
On the basis of Kronfli's result of the previous section, there exists an 

observable D'~(u) ~ 0 such that u*(cets) = DT(u)*(s), namely 

IRY(a,s)(u(dy))=iRys(DT(u)(dy))  V s ~ X ,  t>-O 

According to our assumption of the existence and uniqueness of observables, 
the map DT(u) is a linear map on O. 

Proposition I. The one-parameter family t ~ D7 of maps O ~ O has 
the following properties: 

(i) D,~ ,=DTDT,  t,r>-O. 
(ii) D T ( E ) c  E, t>--O. 

(iii) DT(I) = I, t >- O. 
(iv) IDT(u)l<lu[, t>-o, u~ O. 

Proof. (i) This follows from the definition of D r .  
(ii) According to results of Gudder (1965, 1970, 1978), denoting V(x) = 

{s(x) ls e S} (x e 0),  then V(x) is the small closed interval containing ~r(x). 
If  x e E ,  

and 

{(a,s)(x)[s~ S } c  [0, 1] 

[0, 1] = V(DT(x)) = {DT(x)(s)ls ~ S} = o'(D'~(x)) 

(iii) By the results mentioned in (ii), {1}= V ( I ) =  V(D'{(I))= 
~r(DT(I)). Hence DT(I)= L Vt--0. 

(iv) This follows by the same arguments which prove (ii). �9 

The one-parameter semigroup t ~ D 7  represents the Heisenberg 
dynamical semigroup induced by the Schr6dinger dynamical semigroup 
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t ~ a,. The problem arises of finding the condition under  which the Heisen- 
berg picture induces the SchriSdinger one. We give a condition in order to 
have the equivalence of  the two descriptions. Let t ~ D, be a one-parameter 
family of linear maps 0--> O. If  u c O, we set D*(u)(s)= s(D,(u))= 
(a,s)(u*). From the definition, a,s is a linear map on X*. 

Axiom2. ats e X, t >_ O, s e X .  

Proposition 2. Let t -~ Dt be a Heisenberg dynamical semigroup of  maps 
O ~ O satisfying conditions (i)-(iv) of  Proposition 1. Then if Axiom 2 holds, 
the corresponding t ~ at is a SchriSdinger dynamical semigroup. 

Proof. One has atot~ = a,+~ from the semigroup property of  Dr. Suppose 
now s e S. If  Xa e Q, one has 

fR y(ats)(x,(dy))=(ats)(a)= f~ ys(Dt(x,)(dy))e[O, 1] 

from assumption (ii) of Proposition 1. Moreover, (ats)(O) = 0, since Dt is 
a linear map and (a,s)(~) = 1. Suppose now a = Via i  e L (a~ • ak). For the 
corresponding questions we have xa = ~i xa, by the definition of  sum of  
observables. Since x N ~ x  in O means s(xN)~s(x) ,  VseS ,  and this is 
equivalent to xN ~ x  in the norm of O because sup{[hi: h e  V(x )} - Ix [  
(x e O) for bounded observables (Gudder,  1965), by assumption (iv) of  
Proposition 1 we have Dtxa = ~ Dtx~. Hence 

(c t t s ) (a)=Iys(Dt(x , ) (dY))=~Iys(Dt(x , ) (dY))=~i(a ts ) (a i )  

so that atS c S. In turn this implies that at is a contraction on X as remarked 
after Definition 1. 

Under the assumptions of  Axioms 1 and 2 the mean value of  a bounded 
observable gives the same result when calculated with the Heisenberg as 
with the Schr6dinger picture. 

The result (ii) of Proposition 2 shows that the questions [or decision 
effects (Ludwig, 1974)] are in general no longer stable under  the irreversible 
Heisenberg dynamics, while this property holds for the set of  all the effects. 

The equivalence of  the Schr6dinger and Heisenberg dynamics can be 
shown to exist by construction in the case of  the reversible dynamics under 
slightly different physical assumptions. �9 

Proposition 3. Let the logic L be complete, and S be the set of all 
o'-additive probability measures on L such that, by sett ing S l ( a ) =  
{s e S i s (a )  = 1} (a e L); the following hold: 

(i) a <- be:> S~(a) c S~(b), a, b e L. 
(ii) S~(A,~ a,~) =('-),~ S,(a~), V{a,~}c L. 
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Let t ~ a, be a one-parameter group of permutations (not necessarily linear) 
of S such that: 

(iii) Va c L, 3b c L such that o~,Sl(a) = Sl(b) and ol,Sl(a 1) = Sl(b+), 
Vt~R. 

Then there exists a one-parameter group t ~ u~ of automorphisms of L and 
a one parameter group t ~ p, of o--convex automorphisms of S which is 
implemented, namely such that (pts)(a) = s(uT'(a)), Va ~ L, t ~ R. 

Proof The result follows after checking that, with our assumptions, 
the results in Gorini and Zecca (1975) still hold and then by setting 

atS l (a)=Sl(uT(a)) ,  (p ,s ) (a)=s(uT(a)) ,  a ~ L ,  t ~ R  

The assumption (iii) of Proposition 3 is essentially equivalent to the request 
that the (quantum) superposition of states and the orthogonality relation 
in L are preserved under time evolution. I 

4. CONCLUDING REMARKS 

In this paper a possible characterization of irreversible dynamics has 
been introduced into the quantum logic scheme by the notion of dynamical 
semigroup (Definition 1). The Schr6dinger-like definition is formulated in 
a context where the states have been structured to Banach space and 
existence and uniqueness of observables has been assumed. 

The results, namely the equivalence of the Schr6dinger and Heisenberg 
pictures, with partial results analogous to the Hilbert case, are based on 
the request contained in Axioms 1 and 2, which seem to be unavoidable 
for getting the physical results. 

Besides the problem of the existence and uniqueness of observables, 
for a critical discussion of which we refer to Gudder (1978), it would be 
satisfactory to have more remote mathematical assumptions than the explicit 
request of Axioms 1 and 2 in order to obtain the same results. In particular, 
a detailed analogy of the duality structure of the trace-class and bounded 
operators in the Hilbert model would be useful. A problem suggested by 
the treatment of the reversible dynamics of Proposition 3 is that of checking 
whether the quantum superposition in its general intrinsic formulation is 
preserved under a dynamical semigroup, a circumstance which holds for 
the (linear) dynamical maps in the Hilbert model (Zecca, 1981) and which 
seems not to be of direct evidence here. In this connection a problem of 
interest is that of characterizing the transformations (a priori not necessarily 
linear or bijective) of the set of the states which preserve superposition in 
its intrinsic formulation at the level of the quantum logic scheme. However, 
this study has problematic aspects (Gorini and Zecca, 1975) and admits 
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s o l u t i o n s  n o t  neces sa r i l y  l i n e a r  a l r e a d y  in  the  case  o f  the  revers ib le  d y n a m i c s  
(Zecca ,  1976). 
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